Hybrid method combining finite difference and pseudospectral method for solving the elastic wave equation 有限元法與偽譜法混合求解彈性波動(dòng)方程
The numerical modeling of 3 - d elastic wave equation using a high - order , staggered - grid , finite difference scheme 交錯(cuò)網(wǎng)格高階差分法三維彈性波數(shù)值模擬
In this paper , on the base of paraxial approximations , we present a set of absorbing boundary conditions of 3d elastic wave equations and apply to the 3d elastic wave numerical modeling in isotropic medium 本文基于傍軸近似法提出了計(jì)算三維彈性波方程的吸收邊界條件公式,表示了各邊界面、邊棱和角點(diǎn)處波場所滿足的單程波方程,并在三維彈性波數(shù)值模擬中進(jìn)行了應(yīng)用。
The main achievements are concluded in the following paragraphs . the elastic wave equations and the boundary conditions of saw in different media are studied , and the behaviors of saw in the isotropic , anisotropic and piezoelectric media are fully discussed 主要的研究工作總結(jié)如下:通過對不同介質(zhì)中的彈性波方程和表面彈性波邊界條件的研究,對各向同性、各向異性以及壓電介質(zhì)中的表面彈性波行為進(jìn)行了詳細(xì)的討論。
This conversion is based on the analytic expression of sonic and elastic wave equation , and use the different wave field extrapolation , which is initially used in seismic migration and forward modeling . this paper introduces the easy and efficient finite - difference method to realize the conversion by comparing three different methods 論文經(jīng)過對三種常規(guī)波場延拓方法( kirchhoff積分法、頻率波數(shù)域法和有限差分法)優(yōu)缺點(diǎn)的比較,采用了簡單易用的有限差分方法來實(shí)現(xiàn)這種轉(zhuǎn)換。